SYNTHESIS AND MECHANISTIC STUDIES OF A 'TETRAZOLE-TETHERED' CEPHALOSPORIN-QUINOLONE HYBRID

S. L. Dax,* D. L. Pruess, P. L. Rossman, C.-C. Wei Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey 07110

(Received in USA 14 October 1992)

Abstract. The synthesis and antibacterial activity of a novel 'tetrazole-tethered' cephalosporin-quinolone hybrid is described. The *in vitro* spectrum of 7 mirrored that of a third-generation cephalosporin. Quinolone-like activity was not observed. β-Lactamase-accelerated hydrolysis of 7 produced tetrazolylquinolone 12 which (*via* independent synthesis) proved to be a weak antibacterial and unable to form free quinolone.

Background and Introduction

Dual-action β-lactam antibacterials¹ are molecular hybrids of β-lactam antibiotics and other antibacterials constructed in a way that allows both components to exert their bactericidal properties. We have previously described dual-action cephalosporins (DACs) which contain quinolones joined *via* ester, thioester, carbamate, ammonium or amine linkages²⁻⁵ and we recently synthesized carbapenem and penem analogs.⁶ The mechanistic picture which has emerged from this work indicates that the intact dual-action agent is acted upon by bacterial enzymes⁷ which can lead to inhibition of peptidoglycan biosynthesis⁸ resulting in the loss of bacterial cell wall production. The 3'-substituent of these cephalosporins is a quinolone which is released as a consequence of β-lactam cleavage and which exhibits its characteristic mode of bacterial killing *via* inhibition of bacterial DNA gyrase.⁹

New ways to release quinolone antibacterials by enzymatic processes that act upon the β -lactam nucleus of a dual-action antibacterial agent are being vigorously explored by a number of research groups. We decided to construct a cephalosporin-quinolone hybrid which contains a C-3'-thiotetrazoleacetic acid moiety¹⁰ to which a quinolone could be attached *via* an amide bond. This hybrid should possess improved hydrolytic stability compared to DACs containing labile quinolone linking groups, and should exhibit good cephalosporin activity since cephems bearing C-3' thiotetrazole substituents are rather potent broad-spectrum antibacterial agents.¹⁰ A consequence of β -lactam cleavage would be the release of thiotetrazole¹¹ tethered to a quinolone. By its design, an intramolecular neighboring group "assisted" amide cleavage process¹² liberating free quinolone may be anticipated, resulting in a dual mode of antibacterial activity (see Figure 1).

210 S. L. Dax et al.

Chemistry

The synthesis of a "tetrazole-tethered" cephalosporin-quinolone hybrid required three distinct operations (Scheme 1). 3-Iodomethylcephem 2^{13} was reacted with tetrazolethiolate 3^{14} to afford product 4. This adduct was activated *via in situ* generation of the corresponding acyl chloride which condensed with silylated quinolone 5 to yield the amide product 6. Subsequent treatment with trifluoroacetic acid cleaved both the *N*-trityl and the *t*-butyl ester protecting groups to give a crude product which upon reverse-phase chromatography afforded pure product 7.

Scheme 1

Scheme 1 (continued):

4
$$\frac{c, d, e}{R^1}$$
 $\frac{H}{S}$ $\frac{N-N}{S}$ $\frac{N-N}{S}$ $\frac{N-N}{N}$ $\frac{N-N}{N}$

- a) DMF, R.T.; b) Aq. potassium biphthalate buffer, 76%; c) ClCOCOCl, i-Pr₂NEt / CH₂Cl₂;
- d) bis(TMS)ciprofloxacin 5 (pre-mixed MSTFA, ciprofloxacin 1); e) Aqueous work-up, 52%;
- f) TFA, anisole / CH₂Cl₂; g) NaHCO₃ / H₂O-CH₃CN reverse-phase chromatography, 60%.

In order to determine the inherent antibacterial activity of 7, in vitro evaluation of the individual components of this hybrid, quinolone 1 (ciprofloxacin) and tetrazolethiolate 3, along with the putative β-lactam hydrolysis product tetrazolylquinolone 12, and cephem-tetrazole 8, was necessary. Cephem-tetrazole 8 was readily available via deprotection of 4 (Scheme 2). Tetrazolylquinolone 12 was prepared by coupling the acyl chloride of thiotetrazoleacetic acid para-nitrobenzyl (pNB) thioether 9 with ciprofloxacin para-nitrobenzyl ester 10 (Figure 2) followed by removal of both pNB protecting groups (Scheme 3). Cephem alcohol 13¹ (Figure 2) was also chosen to be evaluated in these screens.

Scheme 2

4
$$\xrightarrow{a, b}$$
 $H_2N \xrightarrow{N}$ H_2N

a) TFA, anisole / CH₂Cl₂; b) NaHCO₃ / H₂O-CH₃CN, 50%.

212 S. L. DAX et al.

- a) para-nitrobenzyl bromide / DMF; b) H⁺ / H₂O, 35%; c) ClCOCOCl, i-Pr₂NEt / CH₂Cl₂;
- d) ciprofloxacin para-nitrobenzyl ester 10, 69%; e) H₂, Pd-C / DMF; f) H⁺ / H₂O, 30%.

Figure 2

Results and Discussion

In this study, a distinguishing feature of great importance is manifested in the Minimum Inhibitory Concentrations (MICs) against *Pseudomonas aeruginosa* and methicillin-resistant quinolone-sensitive *Staphylococci*. Quinolones exhibit excellent potency while cephalosporins are often ineffective against these pathogens. Dual-action cephalosporins, by way of their targeted enzymatic release of free quinolone, approach *in vitro* potency of the respective quinolone component. In contrast to quinolone 1 (ciprofloxacin), both cephem 13 and cephemtetrazole 8 failed to display significant activity against these bacterial strains but were potent against cephalosporin-susceptible Gram-positive pathogens (*Staphylococcus aureus* Smith, *Streptococcus pneumoniae* and *S. pyogenes*) as well as Gram-negative *Klebsiella pneumoniae* A, and *Proteus vulgaris*. This spectrum of antibacterial activity, representative of a third-generation cephalosporin, is mirrored in the MICs of "tetrazole-tethered" cephalosporin-quinolone hybrid 7, indicating that a dual mode of antibacterial killing was not operative (Table 1). Tetrazolylquinolone 12 proved to be a weak antibacterial agent against both Gram-negative and Gram-

positive pathogens. To our knowledge, 12 is a novel quinolone and reflects a generally detrimental modification to the quinolone nucleus, namely piperazine nitrogen acylation. As judiciously selected, tetrazolethiolate 3 was inactive (MICs >128 μ g/mL) in these assays and thus serves only as a tethering moiety.

Table 1: In Vitro Activity of Cephem-Quinolone 7 and Reference Compounds: MIC (µg/mL)

Organism	7	12	8	13	1
Escherichia coli 257	4	2	0.125	0.25	0.0078
E. coli TEM-1ª	2	2	0.125	0.25	0.0156
Citrobacter freundii BS-16ª	32	4	128	>128	0.0313
Klebsiella pneumoniae A	2	32	0.0625	0.0625	0.25
Enterobacter cloacae P99a	16	2	>128	>128	0.0078
Proteus vulgaris ATCC 6380a	4	4	≤0.0156	0.0625	0.0078
Pseudomonas aeruginosa 5712	>128	128	16	>128	1
Ps. aeruginosa 18SH ^a	128	32	>128	>128	0.25
Staphylococcus aureus Smith	4	32	8	16	0.125
S. aureus 67 ^b	64	64	>128	>128	0.5
S. aureus 753b	128	64	>128	>128	0.25
Streptococcus pneumoniae 6301	≤0.0156	64	0.0313	0.0625	1
S. pyogenes 4	≤0.0156	64	0.0313	<u>≤</u> 0.0157	0.5

(a = constitutive B-lactamase producer; b = methicillin-resistant)

Tetrazole-tethered' cephalosporin-quinolone 7 was subjected to hydrolysis at a physiological pH (7.4) and temperature (37°C) to determine the rate of release of tetrazolylquinolone 12 and free quinolone (ciprofloxacin) 1. In several determinations, 7 was exceptionally stable towards hydrolysis and although half-life values varied considerably ($T_{1/2} \ge 11$ -16 days), the lone quinolone product formed in all cases was tetrazolylquinolone 12, and ciprofloxacin was absent. In an attempt to accelerate β -lactam hydrolysis by interaction with a β -lactamase active against third-generation cephalosporins, a purified *Proteus vulgaris* lactamase¹⁵ was reacted with the cephalosporin-quinolone hybrid 7. While β -lactam hydrolysis was greatly accelerated (7 was nearly completely consumed within one hour), no free ciprofloxacin 1 was detected and the formation of tetrazolylquinolone 12 was observed. Synthetic tetrazolylquinolone 12 was found to be resistant to hydrolysis at neutral pH; strongly basic conditions (pH 11-13) were needed to produce ciprofloxacin to any appreciable extent ($T_{1/2} = 2$ -3 h at pH -12). (All studies were easily monitored by HPLC - see references 2-6).

Conclusions

The design and synthesis of a 'tetrazole-tethered' cephalosporin-quinolone 7 is described. This novel hybrid proved to be exceptionally stable to hydrolysis at physiological pH (7.4) and displayed cephalosporin-like antibacterial activity *in vitro* with no apparent quinolone activity. Hydrolysis studies of 7 with and without a

214 S. L. DAX et al.

(*Proteus vulgaris*) β -lactamase demonstrated that upon β -lactam cleavage, tetrazolylquinolone 12 was released. This compound was a weak antibacterial and unable to release free ciprofloxacin 1. These findings were confirmed via independent synthesis and stability studies.

Acknowledgments

We acknowledge Dr. G. Beskid and Ms. L. Foppiani for their help and we thank Dr. Jim Christenson and Ms. Tamara Robertson for the gift of the *Proteus vulgaris* lactamase enzyme.

References and Notes

- 1. Dax, S. L. Current Opinion in Therapeutic Patents, 1992, 2, 1375-1384.
- 2. Albrecht, H. A.; Beskid, G.; Chan, K.-K.; Christenson, J. G.; Cleeland, R.; Deitcher, K. H.; Georgopapadakou, N. H.; Keith, D. D.; Pruess, D. L.; Sepinwall, J.; Specian, A. C.; Then, R. L.; Weigele, M.; West, K. F.; Yang, R. J. Med. Chem. 1990, 33, 77-86.
- 3. Albrecht, H. A.; Beskid, G.; Christenson, J. G.; Durkin, J. W.; Fallat, V.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Lipschitz, E. R.; McGarry, D. H.; Siebelist, J.; Wei, C.-C.; Weigele, M.; Yang, R. J. Med. Chem. 1991, 34, 669-675.
- 4. Albrecht, H. A.; Beskid, G.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Rossman, P. L.; Wei, C.-C. J. Med. Chem. 1991, 34, 2857-2864.
- Albrecht, H. A.; Beskid, G.; Christenson, J. G.; Deitcher, K. H.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Wei, C.-C. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy, additional abstract Sess. 121 (Chicago, IL), 1991.
- Corraz, A. J.; Dax, S. L.; Dunlap, N. K.; Georgopapadakou, N. H.; Keith, D. D.; Pruess, D. L.; Rossman, P. L.; Then, R.; Unowsky, J.; Wei, C.-C. J. Med. Chem. 1992, 35, 1828-1839.
- 7. Bacterial transpeptidases and β-lactamases react with the β-lactam nucleus of dual-action cephalosporins.
- 8. Fiere, J. M.; Jonis, B. CRC Crit. Rev. Microbiol. 1985, 11, 299-396.
- 9. Wolfson, J. S.; Hooper, D. C. Antimicrob. Agents Chemother. 1985, 28, 581-586.
- 10. For example: Jones, R. N. J. Antibiotics, 1977, 30, 576, 583 (Ceforanide).
- 11. Welage, L. S.; Borin, M. T.; Wilton, J. H.; Hejmanowski, L. G.; Wels, P. B.; Schentag, J. J. Antimicrob. Agents Chemother. 1990, 34, 2369-2374, and references cited therein.
- 12. Barton, J. R. *Protective Groups in Organic Chemistry*; McOmie, J. F., Ed.; Plenum Press: London, UK, 1973; pp. 50-51.
- 13. Bonjouklian, R.; Phillips, M. L. Tetrahedron Lett. 1981, 22, 3915-3918.
- 14. Lim, G. M. F.; Endo, M. U.S. patent 4,374,994 (1983) to Bristol-Myers Company (*Chem. Abstr.* 95: 80971s).
- Christenson, J.; Squires, E.; Geiger, R.; Talbot, M. Current Chemotherapy and Immunotherapy, Proceedings of the 12th International Congress of Chemotherapy, American Society for Microbiology (Washington, D.C.), 1981, 748-751.